Eigenvalue, Difference Equation and Differential Equation

update on Oct 20

I finally see a connection between eigenvalue and practice from episode22 and episode23. Take the Fibonacci sequence as an example:

\[F_{k+2} = F_{k+1} + F_{k}\] \[F_{k+1} = F_{k+1}\]

let vector \(u_{k} = \left[ \begin{matrix} F_{k+1} \\ F_{k} \end{matrix} \right]\), we can get:

\[u_{k+1} = A u_{k}\]

in which \(A = \left[ \begin{matrix} 1 & 1 \\ 1 & 0 \end{matrix} \right]\). And find the eigenvalue $ \lambda = \frac{1 \pm \sqrt{5}}{2} $. So

\[F_{k} \approx c_1 (\frac{1 + \sqrt{5}}{2})^{k}\]

since

\[u_{k} = A^ku_0 = c_1 \lambda_1 ^ k x_1 + c_2 \lambda_2 ^ k x_2 + \dots + c_n \lambda_n ^ k x_n = \Lambda ^k S c\]

in which \(\Lambda = \left[ \begin{matrix} \lambda_1 \\ & \ddots & \\ & & \lambda _n \end{matrix} \right]\), $ S = \left[ \begin{matrix} x_1 & x_2 & \dots & x_n \end{matrix} \right]$, where $ x $ is the eigenvectors of matrix A.

It is similar with differential equations, say:

\[\frac{du_1}{dt} = -u_1 + 2u_2 \\ \frac{du_2}{dt} = u_1 - 2u_2\]

let vector \(u = \left[ \begin{matrix} u_1 \\ u_2 \end{matrix} \right]\), we can get:

\[\frac{du}{dt} = A u\]

in which \(A = \left[ \begin{matrix} -1 & 2 \\ 1 & -2 \end{matrix} \right]\). And solution:

\[u(t) = c_1e^{\lambda _1 t}x_1 + c_2e^{\lambda _2 t}x_1\]

Another example:

\[y'' + by' + ky = 0\]

let vector \(u = \left[ \begin{matrix} y' \\ y \end{matrix} \right]\), we can get:

\[u' = \left[ \begin{matrix} y'' \\ y' \end{matrix} \right]= \left[ \begin{matrix} -b & -k \\ 1 & 0 \end{matrix} \right] \left[ \begin{matrix} y' \\ y \end{matrix} \right]\]

in this way, we can easily solve $n$th order diffenrence or diffenrential equations.


Formula of Solving Inverse of Matrixs

update on Oct 18

\[A^{-1} = \frac{1}{det A} C^T\]

in which $ C $ means the cofactor of matrixs A. Prof. Strang give a very beautiful proof of this formula: tett beeutiful

to proof

\[A^{-1} = \frac{1}{det A} C^T\]

equals to proof:

\[A C^T = det A I\]

which means:

\[\left[ \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{matrix} \right] \left[ \begin{matrix} c_{11} & c_{21} & \cdots & c_{n1} \\ c_{12} & c_{22} & \cdots & c_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{matrix} \right] = \left[ \begin{matrix} detA & 0 & \cdots & 0 \\ 0 & detA & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & detA \end{matrix} \right]\]

We can find the $i$th row of $ A $ times the $i$th column of $ C $ equals $ detA $, and the other combinations are all zeros. It’s done!


Big Formula of Determinant

update on Oct 17

\[det A = \sum_{n!terms}\pm{a_{1\alpha}a_{2\beta}a_{3\gamma}}\dots a_{n\omega}\]

$ (\alpha, \beta, \gamma \dots \omega) = Permutation \space of \space (1, 2, 3 \dots n) $


关于正规方程(Normal Equation)的理解

update on Oct 16

\[x = (A^TA)^{-1}A^Tb\]

对于一个方程 $ Ax = b $ ,其中A是$ m \times n $的长矩阵。这意味着此方程可能无解。换言之,b向量可能不在 $ Ax $ 张成的空间中。为此,我们可以把b向量进行投影(Projection),也就是方程两边同时乘以矩阵A的转置:

\[A^TAx = A^Tb\]

这样就可以得到向量x的最优解:

\[x = (A^TA)^{-1}A^Tb\]